化石能源的巨大消耗和由此所帶來的環(huán)境和氣候問題,促使當今世界的能源結構正從單一的化石能源向包括可再生能源、核能在內的多元化能源結構轉變。
Declining fossil fuel reserves and the global climate change associated with the consumption of fossil fuel havetriggered intensive interest in developing renewable energy sources.
作為可再生資源重要組成部分的生物質資源,實現其清潔高效地轉化為能源化學品已經成為許多國家的重要發(fā)展戰(zhàn)略。
Biomass is the only renewable organic carbonsource in nature, which endows it with unique advantages in producing various industrially important chemicals.
木質纖維素是地球上最豐富的生物質資源,以木質纖維素為原料制備液體燃料和化學品,對于補充我國化石資源短缺、減輕環(huán)境污染壓力、實現經濟可持續(xù)發(fā)展具有重大意義。
Cellulose is the most abundant biomass on earth, and the rich hydroxyl groups in the molecules make it an idealfeedstock for the production of polyols.
催化是實現木質纖維素高效高選擇性轉化的重要途徑。
However, the intra- and inter-molecular hydrogen bonding network protectsthe glycosidic bonds from attack by most solvents or catalysts, and the degradation of cellulose under milderconditions has therefore become a challenging task.
本報告將針對木質纖維素催化轉化制取燃油和化學品所面臨的機遇和挑戰(zhàn),主要以纖維素轉化為大宗化學品乙二醇為例,闡述新反應過程的開發(fā)、多功能催化材料的設計、催化劑的原位表征以及反應機理和反應動力學的微觀描述,以期為未來的生物煉制技術提供新的方法和思路。
In this presentation, we show that under the catalysis ofmulti-functional tungsten-based catalysts, cellulose could be transformed into ethylene glycol with a highconversion and selectivity. The performances of various catalyst formulations containing tungsten compounds werediscussed, and the reaction mechanism was proposed based on the characterizations of the catalysts and the reactionkinetics.
上一篇:為您具體介紹二甲基甲酰胺 | 下一篇:石化路線合成乙二醇的幾種方法 |